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Referential data structuresSergei Art�emov�University of Berne, IAM,L�anggassstr. 51,CH- 3012 Berne.e-mail:artemov@iam.unibe.ch Vladimir KrupskiyDepartment of MathematicsMoscow State UniversityMoscow 119899, RUSSIAemail:krupski@sci.math.msu.suMarch, 1994AbstractWe introduce reference structures { a basic logical model of a computer memoryorganization capable to store and utilize information about its addresses. The corre-sponding labeled modal logics are axiomatized and supplied with the completeness anddecidability theorems. A labeled modal formula can be regarded as a description of acertain reference structure; the satis�ability algorithm gives a method of building andoptimizing reference structures satisfying a given formula.1 IntroductionThe information about memory blocks addresses are built-in into some data structures, whichare arranged in order to provide more fast, more direct access to the memory blocks.For example, a structure list of A1; A2; : : : is a set of records each of which contains aproper data Ai together with the address pi+1 of the record containing Ai+1:p1 stores (A1; p2); p2 stores (A2; p3); : : : :A structure tree is organized as a set of records containing a proper data together with theaddresses of all successors of a given node. These are simple examples of reference structures.In the example list the search algorithm considers a component \p2" from the cell p1 as aspecial short sign saying that \A2 is stored in p2". Note that this sign is of a size of theaddress of p2, not of A2.�Supported by the Swiss Nationalfonds (project 20-32705.91) during the stay at the University of Bernein January of 1994 and by the grant # 93-011-16015 of the Russian Foundation for Fundamental ResearchyPartially supported by the grant # 2.1.21 of the Foundation \Universities of Russia" { Fundamentalproblems of mathematics and mechanics. 1
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We intend to use a language of labeled modalities 2p(�), where 2pA stands for \block pstores A", to describe reference structures. It requires that a structure stores sentences, notnumbers, terms, names etc. However, it does not lead to a loss of generality for our purposes.Suppose we have to arrange a certain ordered storage of proper data A1; A2; : : :. If Ai forexample should originally represent a number N , we assume that Ai is the sentence \this isa number N"; the same treatment may be given to other sorts of proper information: terms,names, substitutions, etc. Thus, we assume that the proper information is represented ina reference structure as a uniform set of \atomic sentences" A1; A2; : : :. This sentence-styledescription makes all stored atomic sentences true. Note that the labeled modal approachpresented here is concerned about referential behavior of the memory organization and ignoresproper information stored; the proper information is hidden in a uniform set of \atomicsentences".Moreover, we may assume that all stored sentences are true; indeed, each sentence storedis either an atomic one or a true statement about the contents of certain cells, about thelocation of �les, etc. This gives us a condition which all the reference structures satisfy:2pA! A:Another condition appears when we try to make the meaning of 2pA precise: it isassumed that p stores not more than one sentence, otherwise we put A to be a conjunctionof all sentences stored in p. In fact, if we admit that p can store several sentences, thenwithout extending our basic labeled modal language we loose the control of a cell content;there will be no way to say that p stores exactly the sentences B1; : : : ; Bk, and no others.This imposes another condition of the reference structures:2pA and 2pB implies that A and B coincide.Below, in a particular labeled modal language with variables over abstract addresses andover data sentences this condition will be expressed explicitly via uni�cation of correspondingformulas.Reference structures become more realistic model of referential data organizations afterwe incorporate procedures of reading the contents of memory blocks into them. With areading procedure it becomes possible to represent direct references to the contents and tothe address of a cell by short formulas . This will allow to build optimal reference structures,where a system of aliases is used and no one formula is stored twice. This can give anexponential gain of memory compare to the usual reference structures.Concerning possible applications of logics of reference structures one may expect themto appear in situations, when we have to arrange a large amount of data within a memorywith costly access to it and/or with frequent queries.2 Reference structuresDe�nition 2.1 Let M and X be nonempty sets. Elements of M will be called memory2
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cells; elements of X - atomic statements. We treat each A 2 X as a sentence of someformal language with given semantics, i.e. we suppose that every such A is a sentence whichis either true or false. The set of reference formulas L(M;X) is de�ned as follows:� f>g [X � L(M;X);� if A;B 2 L(M;X), then (A ^B); :A 2 L(M;X);� if A 2 L(M;X) and p 2M , then 2pA 2 L(M;X):Here ^ and : denote classical conjunction and negation, > is the boolean constant for truth.Other boolean connectives will be used in L(M;X) as suitable abbreviations. Labeled modal-ities 2p correspond to cells p 2 M . Let < = (M;X;R j=), where R � M � L(M;X) andj= is a validity relation on X. We de�ne the validity relation < j= A for A 2 L(M;X) asfollows:� < j= x , j= x for x 2 X;� < j= >;� < j= (A ^B) , < j= A and < j= B;� < j= :A , < 6j= A;� < j= (2pA) , (p;A) 2 R.< = (M;X;R; j=) is called reference structure (r.s.), if the relation R is functional and thecondition (p;A) 2 R ) < j= Aholds for each p 2M and A 2 L(M;X).Example 2.2 A list of A1; A2; :::; An can be regarded as r.s. (M;X;R; j=), where M =fp1; p2; :::; pn; qg is the set of cells, X = fA1; A2; :::; Ang is the set of atomic sentences, j= Aifor all i and R = f(p1; '1); :::; (pn; 'n); (q;>)gfor '1 = A1 ^ 2p2'2; '2 = A2 ^ 2p3'3; : : : ; 'n = An ^ 2q>; here > works as a marker ofthe end node. The entire list can be represented by the formula 2p1'1.It does not mean, however that we intend to store the entire list in the cell p1. Afterintroducing reading procedures below we will use a short formula fp2 of the size of p2 insteadof 2p2'2; the meaning of fp2 as \p2 stores '2" is in fact built in the search algorithm. Thusa correspondence between a reference structures and real data bases widely uses the defaultstrategy of the search algorithms.De�nition 2.3 A reading procedure � : M 7�! L(M;X) for reference structure < =(M;X;R; j=) is a total functional extension of storage relation R.3
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If a cell p 2 M contains a sentence from L(M;X), then the reading procedure returnsthe contents of p; otherwise is returns some sentence of L(M;X), which may be regarded asan error message depending on p.De�nition 2.4 A reference structure with reading (r.s.r.) is a pair where < is r.s. and �is a reading procedure on <. We omit � in (<; �), if the storage relation R in < is total.There is no natural way to represent functions in a propositional language; it requiressome technical maneuvers to incorporate a reading procedure into L(M;X).De�nition 2.5 The language bL(M;X) extends L(M;X) by allowing sentence constant bpfor each cell p 2M .Every r.s.r. determines the translation from bL(M;X) into L(M;X): for A 2 bL(M;X) itstranslation A� is the result of substitution of the variables bp by the values �(p) everywherein A. We de�ne (<; �) j= A , < j= A�:So bp denotes the contents of p. If a cell p is empty, then 2p bq is false for any q. Thus 2p bpis true i� the cell p is not empty. We de�ne a formula ep as 2p bp and will use it as a naturalpointer. Note that the length of 2p bp can be easily made of the order of the size of p.De�nition 2.6 The formula A 2 bL(M;X) is an alias for the formula B 2 L(M;X) withrespect to (<; �) if A� = B .De�nition 2.7 Let r.s. < = (M;X;R; j=) with reading procedure � be �xed. The relationR1 �M � bL(M;X) is called a reduced storage relation of (<; �), if1. R1 is functional and has the same domain as R.2. R = f(p;A�) j (p;A) 2 R1g.If R1 is a reduced storage relation for (<; �), then the quadruple <1 = (M;X;R1; j=) is areduction of (<; �). The validity relation <1 j= A for any A 2 bL(M;X) is naturally de�nedby induction on A (we list only item additional to de�nition 2.1 of the reference structure):� <1 j= bp , (<; �) j= bpClearly for any A 2 bL(M;X) <1 j= A , (<; �) j= A:Example 2.8 Now instead of the reference structure \list" from example 2.2 one may con-sider its reduced storage relationR1 = f(p1; A1 ^ fp2); (p2; A2 ^ fp3); : : : ; (pn; An ^ eq); (q;>)g:The corresponding reduction of the r.s. from 2.2 can now be represented by the formula2p1(A1 ^ fp2) ^ : : : ^ 2pn(An ^ eq) ^2q>:4
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The language bL(M;X) may give the exponential gain in the length of descriptions com-pare to L(M;X).Example 2.9 The formula' = 2p0A ^2p1(bp0 ^ bp0) ^ : : : ^2pn(bpn�1 ^ bpn�1)is valid i� the corresponding fragment of r.s. looks like this:p0 stores A;p1 stores A ^A;p2 stores (A ^A) ^ (A ^A);... ... ...pn stores (: : : (A ^ A) ^ : : :) ^ (: : : ^ (A ^ A) : : :):Any L(M;X)-formula describing the same storage relation is exponentially longer than '.3 Logic of reference structuresWe introduce now a logical calculus dPU which is a conservative extension of PU from[1]. Reference structures will be natural models of dPU ; moreover dPU will be proven to becomplete with respect to the class of all (�nite) reference structures with reading procedures.Consider the abstract labeled modal language bL which contains memory cell variablesb0; b1; b2; : : :, two sorts of sentence variables S0; S1; S2; : : : and bb0; bb1; bb2 : : :, constant >, andis closed under boolean connectives and unary operators 2bi ; i = 0; 1; 2; : : :.De�nition 3.1 An interpretation of bL is r.s. (M;X;R; j=) with reading procedure �, and amapping � of b0; b1; b2; : : : into M and bL into L(M;X) such that � commutes with the booleanconnectives, (bbi)� = �(b�i ) and (2pA)� is 2p�A�. We say that an interpretation � of bL inr.s.r. (<; �) is a model of � 2 bL if A� is valid in < for each A 2 �.The language bL may now be regarded as a programming language for designing refer-ence structures and reductions of reference structures. A program here is a formula A 2 bLdescribing the properties of a pair (<; �). Satis�ability of A means the existence of a de-sired r.s.r. (<; �). The satis�ability algorithm for the language bL naturally arises from thecompleteness proof of the calculus dPU (below).We assume a reader to be familiar with substitutions and common uni�cation technique(cf.[2]). For a convenience we consider some deterministic variant of the Uni�cation Algo-rithm by �xing an order of the equations for this algorithm to choose. Usually the Uni�cationAlgorithm deals with systems of \unconditional" equalities of the form A� = B�. We areinterested in the \conditional" equalities of the form bi� = bj� =) bbi� = bbj� too. Thesuitable modi�cation U of the Uni�cation Algorithm is as follows: using the standard Uni-�cation Algorithm solve the unconditional part of the system, then check the conditions; if5
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the conditions fail, then we are done. If the conditions are ful�lled, add succedent equationsto the unconditional part and solve the system again, etc.. The process terminates whenthe checking procedure fails to add new equalities or the Uni�cation Algorithm fails to solvethe unconditional part of the system. The standard argument proves that this modi�cationgives the most general solution (m.g.u.) of the system with \conditional" equations.De�nition 3.2 The standard m.g.u. �A;B;p of the set of equationsbp� = A� = B�;bi� = bj� =) bbi� = bbj�: (1)is the m.g.u. obtained by U. Note that � acts on the variables of all sorts, bi� is a cellvariable, bbi� and Si� are formulas from bL.Lemma 3.3 (Cf.[2]) Dom(�A;B;p) \ V al(�A;B;p) = ; and �A;B;p is idempotent, i.e. �A;B;p ��A;B;p = �A;B;p, and for every solution � of (1) there exists a substitution � s.t. � = �A;B;p��.De�nition 3.4 We de�ne C = D (mod bp = A = B) to be an abbreviation for\C� = D� for every solution � of (1)".Apparently, if the system (1) has no solution, then C = D (mod bp = A = B) holds forall C and D. If the system (1) has a solution thenC = D (mod bp = A = B) () C�A;B;p = D�A;B;p:So, the relation C = D (mod bp = A = B) is decidable.De�nition 3.5 Axioms of dPU :(A1) The classical propositional calculus.(A2) 2pA! A.(A3) 2pA ^2pB ! (C ! D) if C = D (mod bp = A = B).Axiom (A3) is similar to the uni�cation axiom from [1] and the functionality axiom from[3].Lemma 3.6 If A 2 bL and ` A, then A� is valid for all interpretations �.Proof. A straightforward induction on the proof of A.Lemma 3.7 The following is provable in dPU :6
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(A30) :(2p1A1 ^ : : :2pnAn) if a substitution � with the propertybpk� = Ak�; k = 1; : : : ; n;bi� = bj� =) bbi� = bbj� (2)does not exist.(A40) 2p1A1 ^ : : :2pnAn ! (B $ C) if B� = C� for the most general uni�er � satisfyingthe condition (2) and obtained as a result of the standard uni�cation algorithm U.Proof. Induction on n. If n = 1 then (A30),(A40) are equivalent to the variants of (A3)where A = B. Let n > 1; ' = Vi=n�1i=1 2piA.Case (A40). Note that the standard m.g.u. is an idempotent. By induction` '! (B $ B�1);` '! (C $ C�1);` '! (2pn bpn $ (2pn bpn)�1);` '! (2pnAn $ (2pnAn)�1); (3)where �1 is the standard most general uni�er for the system:bpk�1 = Ak�1; k = 1; : : : ; n� 1;bi�1 = bj�1 =) bbi�1 = bbj�1: (4)Consider the system bpn�2 = bpn�1�2;bpn�2 = An�1�2;bi�1 = bj�1 =) bbi�1 = bbj�1 (5)and the standard most general uni�er �2 for it. System (5) is a variant of (1), the consistencyof (4) and (5) follows from the consistency of (2). Then �0 = �1�2 is a solution of (2) andB�1�2 = C�1�2 so (2pn bpn)�1 ^ (2pnAn)�1 ! (B�1 $ C�1) (6)is a variant of (A3). The formula 2pnAn ! 2pn bpn (7)is also provable (from (A1); (A3)). So (A40) is derivable from (3),(6),(7) in classical propo-sitional calculus.Case (A30). If the system (4) has no solution then, by induction, :' is provable and sois (A30). Else, following the previous case we prove that (2) is inconsistent i� (5) is. So:((2pn bpn)�1 ^ (2pnAn)�1)is equivalent to a variant of (A3). Similarly` 2p1A1 ^ : : : ^2pnAn ! (2pn bpn)�1 ^ (2pnAn)�1;that proves (A40). 7
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4 The Completeness theoremTheorem 4.1 For any formula A 2 bLdPU ` A i� A is valid under all interpretationsin reference structures with reading.Proof. The correctness part of the theorem follows from Lemma 3.6. The completenessproof is based on the Gentzen style formulation of dPU and saturation procedure.In the following a sequent is a formal expression of the form � � �, where � and � are�nite subsets of bL.De�nition 4.2 dPUG is the sequent calculus with axioms and rules of inference as follows:Axioms:� � � � such that � \� 6= ; or > 2 � .� � � , where � = f2piAi j i = 1; : : : ; ng and a substitution � with the property (2) for� does not exist.Rules:� Classical rules for ^,: and structural rules together with the cut-rule.� A;� � �2pA;� � �� �; B�;� � ��; B;� � � , �;� � B�;��;� � B;� , where � = f2piAi j i = 1; : : : ; ng and � is themost general uni�er satisfying the condition (2) for � and obtained as a result of thestandard uni�cation algorithm U. dPUG� is the system dPUG without the cut rule.Lemma 4.3 (Soundness of dPUG w.r.t. dPU) If dPUG ` � � � then � ` W�. 1Proof. Straightforward induction on the complexity of the proof of � � � in dPUG.De�nition 4.4 Saturation process is the nondeterministic procedure constructing a labeledsaturation tree as follows:1 W� denotes A1 _ : : :_An for � = A1; :::; An 8
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Given the sequent �0 � �0 label the root with it and try repeatedly to applythe saturation rules while they permit to add to the tree some node with the labeldi�erent from the label of its parent. The rules can be applied to an arbitraryleaf of the current part of the tree if its label � � � is not an axiom of dPUG.In the formulations of the rules we suppose that such a leaf (a current node) isalready chosen.Saturation rules:Rule 1. If A ^ B 2 �, then �1 := � [ fA;Bg and �1 := �. Add to the tree ason of the current node labeled with the sequent �1 � �1.Rule 2. If A^B 2 �, then �1 := �;�1 := �[fAg and �2 := �;�2 := �[fBg:Add to the tree two sons of the current node labeled with the sequents�1 � �1 and �2 � �2 .Rule 3. If :A 2 � (:A 2 �), then �1 := �;�1 := � [ fAg (�1 := � [ fAgand �1 := �). Add to the tree a son of the current node labeled with thesequent �1 � �1.Rule 4. If 2pA 2 �, then �1 := � [ fAg and �1 := �. Add to the tree a son ofthe current node labeled with the sequent �1 � �1.Rule 5. Call the uni�cation algorithm U to get the most general solution � ofthe system (2) where 2piAi; i = 1; :::; n is the list of all formulas of the form2pA from �. Let �1 := �[ fB�jB 2 �g and �1 := �[ fB�jB 2 �g: Addto the tree a son of the current node labeled with the sequent �1 � �1.Remark on termination. Rules 1-4 do not change the subformulas of the sequent sothey can not be applied in�nitely many times. In rule 5 the algorithm U calls the standardUni�cation Algorithm. The last one being applied to the `unconditional' part of the system(2) returns a substitution � with the property �2 = � that acts only on the variables from�0 [ �0. Let V be the set of all such variables and V0 = fv 2 V jv� = vg. The set V0depends on the order in which the equations of the system (2) are given to the Uni�cationAlgorithm. If we add to the end of the system (2) some new equations without violationof the consistency of the system then the Uni�cation Algorithm returns a substitution withcorresponding set V 00 � V0. So it is possible (and we suppose it is done) to implement thecalls to the uni�cation algorithmU in such a way that along every path in the saturation treethe sequence of corresponding sets V0 decreases monotonically. That provides a bound onthe set of subformulas. Thus a saturation tree for every sequent is �nite (but not necessarilyunique). Therefore the saturation process always terminates and computes some saturationtree of a given sequent. We say that the saturation process succeeds if it produces a saturationtree with all leafs labeled with axioms; otherwise it fails.Lemma 4.5 If the saturation process on a given sequent succeeds, then the sequent is prov-able in dPUG�. 9
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Proof. The saturation tree with all leafs labeled by axioms is in fact the tree-like derivationin dPUG� of the sequent labeling the root.Lemma 4.6 If the saturation process fails on a sequent �0 � �0, then the interpretation �with the property < j= (^�0)�; < 6j= (_�0)� (8)can be constructed from the saturation tree.Proof. The saturation process provides the following saturation properties of the sequent� � � which is not an axiom and labels some leaf of the saturation tree:� �0 � �;�0 � �; � \� = ;; > 62 �;� if (A ^ B) 2 �, then A 2 � and B 2 �;� if (A ^ B) 2 �, then A 2 � or B 2 �;� if :A 2 �, then A 2 �; if :A 2 �, then A 2 �� if 2pA 2 �, then A 2 �;� if 2piAi; i = 1; :::; n is a list of all formulas of the form 2pA from �, then there exista substitution � with the property (2);� if � is the standard m.g.u. of (2) and A 2 � (A 2 �), then A� 2 � (A� 2 �).Let V0 be the set of all variables from �0[�0 with the property v� = v. For each variablev 2 V0 we choose a new constant of the corresponding type (cell or sentence) denoted by xv.Let M = fxv j v 2 V0; v is a cell variablegX = fxv j v 2 V0; v is a sentence variablegv�1 = xv; (v 2 V0);R = f(xp; A�1)j p 2 V0; (2pA) 2 ��:gWe also assume that v�1 2 X for v 62 V0. The validity relation on X is de�ned as follows:j= xv i� v 2 ��:We claim that A 2 � =) < j= A�;A 2 � =) < 6j= A�:Indeed, note that �� � �;�� � � and it is su�cient to prove the claim for A 2 �� [��because A� has the same interpretation as A. Induction on the complexity of A 2 �� [��:� Case A = > follows from the saturation properties.10
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� Case A = Si follows from the de�nition of j=.� Case A = bp. Then bp 2 V0 andbp� = �(p�) = �(xp1) = d(p1)��1where p1 = p� 2 V0. So p� = p1� and bp� = cp1� = bp. We havebp� = bp�1 = xbp:By de�nition of validity relation < j= bp� i� bp 2 ��:� Case A = (B^C) follows from the saturation properties and the induction hypothesis.� Case A = 2pB follows from the de�nition of R.We are now to prove that < := (M;X;R; j=) is a r.s., �(xp) = bp��1; (xp 2 M) is areading procedure and the condition (8) holds for � = ��1.< is a r.s.. The functionality of R follows from saturation properties.(xp; A�1) 2 R =) 2pA 2 ��=) A 2 �� � � (saturation property)=) < j= A� (by Claim above)=) < j= A�1 (A�1 = A�):� is a reading procedure:(xp; A�1) 2 R =) 2pA 2 �� � �=) bp� = A� = A (�2 = �)=) �(xp) = bp��1 = A�1:The conditions (8) follow from the claim and saturation property �0 � �, �0 � �.The completeness part of Theorem 4.1 follows now from Lemmas 4.3, 4.5, 4.6.Corollary 4.7 For �nite sets �;� of bL-formulas, and any bL-formula A� ` A () dPUG ` � � A;dPUG ` � � � () dPUG� ` � � �:Corollary 4.8 dPU is decidable.Proof. By Corollary 4.7 the decidability of dPU follows from the decidability of dPUG. Thedecision algorithm for dPUG is given by the saturation process. The sequent is provable indPFG i� the Saturation succeeds. 11



www.manaraa.com

5 Reference structures building and optimization.The language bL can now be considered as a programming language for designing referencestructures with reading procedures and their reductions. A program here is a formula ' 2 bLdescribing the properties of some (reduction of) r.s.r. (<; �). The satis�ability algorithmextracted from the proof of the Completeness theorem checks whether ' is satis�able andconstructs the �nite model for ', which is the desired r.s.r. (<; �).The �rst stage is saturation. We reduce the problem of constructing a model for ' tothe problem of constructing a countermodel for the sequent ' �. The saturation algorithmchecks whether this sequent is provable and transforms it into the sequent � � � withsaturation properties. If saturation succeeds, then dPU ` :', and thus there is no r.s.r.satisfying the condition '. If saturation fails, we go to the second stage, which is theconstruction of r.s.r. (<; �) and interpretation � satisfying conditions (8); it is describedin the proof of Lemma 4.6. The interpretation is a model of ' because ' 2 �. Note thataccording to Lemma 4.6 the resulting interpretation � maps sentence variables into atomicsentences of r.s.r. (<; �). It means, that in programming of reference structures by means ofbL-formulas sentence variables stand for atomic sentences of reference structures. The defaultthird stage is a transition from the reference structure (<; �) to a real memory organization;in particular, we have to restore a proper data, hidden under uniform set of atomic sentencesof the reference structure. We may assume that if (p;A) 2 R (where p is a memory cell, Ais an L(M;X)-formula, R is the storage relation of (<; �)), and A is x ^ A0, where x 2 Xis an atomic sentence of (<; �), then we restore in the cell p the proper data correspondingto the atomic sentence x. The occurrences of atomic sentences from X inside the scope oflabeled modalities in A play the role of names of the relevant pieces of proper data, whichare much shorter, then the proper data itself; these names are not supposed to be replaced.So, we �nally get a memory organization with cells containing proper information togetherwith (much shorter) referential components, describing the structure of storage relation.There are many natural ways to use the logic dPU and the satis�ability algorithm toconstruct the desired reductions of r.s.r.'s. For example, suppose the formula ' describing areference structure has the form2p1A1 ^2p2A2 ^ : : :2pnAn ^ '0:Then the interpretation � from Lemma 4.6 determines not only r.s.r (<; �), but also a reduc-tion of (<; �) with the reduced storage relation R1 such that (p�i ; A�i ) 2 R1 for all i = 1; : : : ; n.In order to construct reductions of r.s.r.'s which use only one cell instead of many con-taining the same record, i.e. to construct r.s. with functional relation R�1 or, moreover,with invertible reading procedure �, we introduce the logics dPU1 and dPU 1�1. The logic dPU1is dPU + (A5) where (A5) is the following axiom scheme:(A5) 2pA ^2p0A ! (B $ B[p0=p]):12
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dPU1�1 is the modi�cation of dPU where the \conditional" equality bi� = bj� =) bbi� = bbj�is replaced by bi� = bj�() bbi� = bbj�:Theorem 5.1 For any formula A 2 bL1. dPU1 ` A i� A� is valid for all interpretations � in r.s.r. with functional relation R�1;2. dPU1�1 ` A i� A� is valid for all interpretations � in r.s.r. with invertible readingprocedure �.Proof. Similar to the proof of Theorem 4.1.The logics dPU1 and dPU1�1 are also decidable. The satis�ability algorithms from thecompleteness proofs for these logics can be used in the same way as that for dPU to constructr.s.r. without double stored sentences.References[1] S. Art�emov and T. Strassen. Functionality in the Basic Logic of Proofs. Technical reportIAM 93-004, Universit�at Bern, January, 1993.[2] J.-L.Lasser, M.J.Maher and K.Marriot. Uni�cation revisited. In: \Foundations of Deduc-tive Databases and Logic Programming" J.Minker (Ed.), Morgan Kau�man, pp.587-626,1987.[3] S. Art�emov. Logic of proofs. Annals of Pure and Applied Logic, v.67, 1994 (to appear).
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