Referential data structures

Sergei Artémov* Vladimir Krupskit
University of Berne, IAM, Department of Mathematics
Langgassstr. 51, Moscow State University
CH- 3012 Berne. Moscow 119899, RUSSIA
e-mail:artemov@iam.unibe.ch email :krupski@sci.math.msu.su
March, 1994
Abstract

We introduce reference structures — a basic logical model of a computer memory
organization capable to store and utilize information about its addresses. The corre-
sponding labeled modal logics are axiomatized and supplied with the completeness and
decidability theorems. A labeled modal formula can be regarded as a description of a
certain reference structure; the satisfiability algorithm gives a method of building and
optimizing reference structures satisfying a given formula.

1 Introduction

The information about memory blocks addresses are built-in into some data structures, which
are arranged in order to provide more fast, more direct access to the memory blocks.

For example, a structure list of Ay, Ay, ... is a set of records each of which contains a
proper data A; together with the address p;1; of the record containing A; ;:

p1 stores (Ay,pg), p2 stores (Ag,ps), ...

A structure tree is organized as a set of records containing a proper data together with the
addresses of all successors of a given node. These are simple examples of reference structures.
In the example list the search algorithm considers a component “p,” from the cell p; as a
special short sign saying that “A, is stored in p,”. Note that this sign is of a size of the
address of py, not of A,.

*Supported by the Swiss Nationalfonds (project 20-32705.91) during the stay at the University of Berne
in January of 1994 and by the grant # 93-011-16015 of the Russian Foundation for Fundamental Research

TPartially supported by the grant # 2.1.21 of the Foundation “Universities of Russia” — Fundamental
problems of mathematics and mechanics.

www.manaraa.com

We intend to use a language of labeled modalities O,(-), where O, A stands for “block p
stores A”, to describe reference structures. It requires that a structure stores sentences, not
numbers, terms, names etc. However, it does not lead to a loss of generality for our purposes.
Suppose we have to arrange a certain ordered storage of proper data Ay, As,.... If A; for
example should originally represent a number N, we assume that A; is the sentence “this is
a number N”; the same treatment may be given to other sorts of proper information: terms,
names, substitutions, etc. Thus, we assume that the proper information is represented in
a reference structure as a uniform set of “atomic sentences” Ay, A,,.... This sentence-style
description makes all stored atomic sentences true. Note that the labeled modal approach
presented here is concerned about referential behavior of the memory organization and ignores
proper information stored; the proper information is hidden in a uniform set of “atomic
sentences”.

Moreover, we may assume that all stored sentences are true; indeed, each sentence stored
is either an atomic one or a true statement about the contents of certain cells, about the
location of files, etc. This gives us a condition which all the reference structures satisfy:

0,4 — A.

Another condition appears when we try to make the meaning of O, A precise: it is
assumed that p stores not more than one sentence, otherwise we put A to be a conjunction
of all sentences stored in p. In fact, if we admit that p can store several sentences, then
without extending our basic labeled modal language we loose the control of a cell content;
there will be no way to say that p stores exactly the sentences By,..., By, and no others.
This imposes another condition of the reference structures:

0,A and O,B implies that A and B coincide.

Below, in a particular labeled modal language with variables over abstract addresses and
over data sentences this condition will be expressed explicitly via unification of corresponding
formulas.

Reference structures become more realistic model of referential data organizations after
we incorporate procedures of reading the contents of memory blocks into them. With a
reading procedure it becomes possible to represent direct references to the contents and to
the address of a cell by short formulas . This will allow to build optimal reference structures,
where a system of aliases is used and no one formula is stored twice. This can give an
exponential gain of memory compare to the usual reference structures.

Concerning possible applications of logics of reference structures one may expect them
to appear in situations, when we have to arrange a large amount of data within a memory
with costly access to it and/or with frequent queries.

2 Reference structures

Definition 2.1 Let M and X be nonempty sets. Elements of M will be called memory

www.manaraa.com

cells; elements of X - atomic statements. We treat each A € X as a sentence of some
formal language with given semantics, i.e. we suppose that every such A is a sentence which

is either true or false. The set of reference formulas L(M,X) is defined as follows:
o {TYUX C L(M,X);
o if A,BeL(MX), then (ANDB), —A€ L(M,X);
o if Ac L(M,X) and pé€ M, then O,A € L(M,X).

Here N\ and — denote classical conjunction and negation, T is the boolean constant for truth.
Other boolean connectives will be used in L(M, X) as suitable abbreviations. Labeled modal-
ities O, correspond to cells p € M. Let R = (M, X,R), where R C M x L(M,X) and
= is a validity relation on X. We define the validity relation ® E A for A € L(M,X) as
follows:

e REz & Eu foraxz e X;

e RET;

e R=E(AANB) & REAwmdREB;
e R4 & RI}EA;

e RE(T,4) & (nA)eR

R =(M,X,R,|=) is called reference structure (r.s.), if the relation R is functional and the
condition

(p,A)e R = REA
holds for each p € M and A € L(M, X).

Example 2.2 A list of A1, Az, ..., A, can be regarded as r.s. (M,X,R,|=), where M =
{p1,D2, ooy P, q} 18 the set of cells, X = {Ay, Aa, ..., A} is the sel of atomic sentences, = A;
for all v and

R = {(pla@l)v D) (pn799n)7 (% T)}

for o1 = A1 NDO, 00, w2 = A3 ANDp 05, ..., @, = A, ANO,T; here T works as a marker of
the end node. The entire list can be represented by the formula O, ¢;.

It does not mean, however that we intend to store the entire list in the cell p;. After
introducing reading procedures below we will use a short formula p; of the size of py instead
of O,,p9; the meaning of p; as “py stores ¢;” is in fact built in the search algorithm. Thus
a correspondence between a reference structures and real data bases widely uses the default
strategy of the search algorithms.

Definition 2.3 A reading procedure 6 : M +—— L(M,X) for reference structure R =
(M, X, R,[E) is a total functional extension of storage relation R.

3

www.manaraa.com

If a cell p € M contains a sentence from L(M, X), then the reading procedure returns
the contents of p; otherwise is returns some sentence of L(M, X), which may be regarded as
an error message depending on p.

Definition 2.4 A reference structure with reading (r.s.r.) is a pair where R is r.s. and 0
is a reading procedure on . We omit 6 in (R,0), if the storage relation R in R is total.

There is no natural way to represent functions in a propositional language; it requires
some technical maneuvers to incorporate a reading procedure into L(M, X).

Definition 2.5 The language E(M,X) extends L(M,X) by allowing sentence constant p
for each cell p € M.

Every r.s.r. determines the translation from E(M, X) into L(M, X): for A € E(M, X) its
translation A6 is the result of substitution of the variables p by the values 6(p) everywhere
in A. We define

(R,OEA & RE A6

So p denotes the contents of p. If a cell p is empty, then O,q is false for any ¢. Thus O,p
is true iff the cell p is not empty. We define a formula p as O,p and will use it as a natural
pointer. Note that the length of O,p can be easily made of the order of the size of p.

Definition 2.6 The formula A € E(M,X) is an alias for the formula B € L(M,X) with
respect to (R,0) if A0 =B .

Definition 2.7 Let r.s. ® = (M, X, R, =) with reading procedure 0 be fized. The relation
Ry C M x L(M,X) is called a reduced storage relation of (R, 0), if

1. Ry is functional and has the same domain as R.

If Ry is a reduced storage relation for (R,0), then the quadruple R, = (M, X, Ry, =) is a
reduction of (R,0). The validity relation Ry = A for any A € L(M, X) is naturally defined
by induction on A (we list only item additional to definition 2.1 of the reference structure):

eRiEp & (RO)Ep
Clearly for any A € E(M,X)
FMEA & (RO E A

Example 2.8 Now instead of the reference structure “list” from example 2.2 one may con-
sider its reduced storage relation

Rl = {(p17A1 A %)7 (p27A2 A%)v RN (pnvAn A q)v (Q7 T)}

The corresponding reduction of the r.s. from 2.2 can now be represented by the formula

O, (A AP A...AD, (A, AG) AD,T.

www.manaraa.com

The language E(M, X)) may give the exponential gain in the length of descriptions com-
pare to L(M, X).

Example 2.9 The formula
¢ =0p AAND, (po APo) Ao ADy, (Paa1 A Po-i)
is valid iff the corresponding fragment of r.s. looks like this:

po stores A,
p1 stores ANA,
p2 stores (ANA)A(ANA),

o atores (C(ANAVA A A(ANA).).

Any L(M, X)-formula describing the same storage relation is exponentially longer than .

3 Logic of reference structures

We introduce now a logical calculus PU which is a conservative extension of PU from
[1]. Reference structures will be natural models of 755; moreover PU will be proven to be
complete with respect to the class of all (finite) reference structures with reading procedures.

Consider the abstract labeled modal language L which contains memory cell variables
bg, b1, by, . .., two sorts of sentence variables Sy, 51,.5;,... and go,gl,gz ..., constant T, and
is closed under boolean connectives and unary operators O,,¢ = 0,1,2,....

Definition 3.1 An interpretation of L is r.s. (M, X, R, =) with reading procedure 8, and a
mapping * of by, by, bs, ... into M and L into L(M, X) such that * commutes with the boolean
connectives, (gz)* = 0(bF) and (O,A)* is O,«A*. We say that an interpretation * of L in
r.s.r. (R,0) is a model of T' € L if A* is valid in R for each A€ T.

The language L may now be regarded as a programming language for designing refer-
ence structures and reductions of reference structures. A program here is a formula A € L
describing the properties of a pair (R,8). Satisfiability of A means the existence of a de-
sired r.s.r. (R, 0). The satisfiability algorithm for the language L naturally arises from the
completeness proof of the calculus PU (below).

We assume a reader to be familiar with substitutions and common unification technique
(cf.[2]). For a convenience we consider some deterministic variant of the Unification Algo-
rithm by fixing an order of the equations for this algorithm to choose. Usually the Unification
Algorithm deals with systems of “unconditional” equalities of the form Ao = Bo. We are
interested in the “conditional” equalities of the form b0 = bjo — Bm = gja too. The
suitable modification U of the Unification Algorithm is as follows: using the standard Uni-
fication Algorithm solve the unconditional part of the system, then check the conditions; if

5

www.manaraa.com

the conditions fail, then we are done. If the conditions are fulfilled, add succedent equations
to the unconditional part and solve the system again, etc.. The process terminates when
the checking procedure fails to add new equalities or the Unification Algorithm fails to solve
the unconditional part of the system. The standard argument proves that this modification
gives the most general solution (m.g.u.) of the system with “conditional” equations.

Definition 3.2 The standard m.g.u. 04 p, of the set of equations

po = Ao = Bo,
b,oc = b]‘O' = b0 = b]‘O'.

(1)

is the m.g.u. obtained by U. Note that o acts on the variables of all sorts, byo is a cell
variable, b;o and S;o are formulas from L.

Lemma 3.3 (Cf.[2]) Dom(cap,) N Val(oap,) =0 and o4, s idempotent, i.e. cap, 0
OABp = 04Byp, and for every solution o of (1) there exists a substitution X s.t. 0 = 045,0A
Definition 3.4 We define C =D (mod p= A= B) to be an abbreviation for

“Co= Do for every solution o of (1)”.

Apparently, if the system (1) has no solution, then C'= D (mod p = A = B) holds for
all C"and D. If the system (1) has a solution then

C=D(mod p=A=B) < Coap,=Doap,.
So, the relation €' = D (mod p= A = B) is decidable.

Definition 3.5 Azioms of PU:

(A1) The classical propositional calculus.

(A2) O,A — A.

(A3) O,ANDO,B - (C—= D) if C=D(modp=A=B).

Axiom (A3) is similar to the unification axiom from [1] and the functionality axiom from

3].

Lemma 3.6 If A € L and + A, then A* is valid for all interpretations *.

Proof. A straightforward induction on the proof of A.]

Lemma 3.7 The following is provable in PU:

6

www.manaraa.com

(A3") =(O,, Ay A...O, A,) if a substitution o with the property

pro = Ao, kfl";"n;
b,oc = b]‘O' = b0 = b]‘O'

(2)
does not exist.

(A4) O, Ay A...0, A, = (B« C) if Bo = Co for the most general unifier o salisfying
the condition (2) and obtained as a result of the standard unification algorithm U.

Proof. Induction on n. If n = 1 then (A3'),(A4") are equivalent to the variants of (A3)
where A = B. Let n > 1, p = AZ771 O, A.
Case (A4/). Note that the standard m.g.u. is an idempotent. By induction
Fe — (B < Boy),
Fo = (C < Coy),
F o = (Op,Pn < (Op,Pn)o1),
Fo = (0,40 < (Op,An)01),

where oy is the standard most general unifier for the system:
proy = Agoq, szl,...,An—l;
bio-l = bjO'l — bio-l == bjO'l.

Consider the system
PnO2 = Pno102,
PnOg = Ajo109, (5)
b,oy = bjO'l — [A)Z'O'l = 6]0'1

and the standard most general unifier o for it. System (5) is a variant of (1), the consistency
of (4) and (5) follows from the consistency of (2). Then o = 0,04 is a solution of (2) and
Boioy = Co09 so

(Op,Pr)or A (Op, An)or = (Boy < Coy) (6)

is a variant of (A3). The formula
DpnAn — Dpnﬁn (7)

is also provable (from (Al),(A3)). So (A4") is derivable from (3),(6),(7) in classical propo-
sitional calculus.

Case (A3'). If the system (4) has no solution then, by induction, = is provable and so
is (A3"). Else, following the previous case we prove that (2) is inconsistent iff (5) is. So

~(Opnpr)or A (Bp, An)or)
is equivalent to a variant of (A3). Similarly
FO, AN ADO, A, — (O, pn)or A (O, Aoy,
that proves (A4'). []

www.manaraa.com

4 The Completeness theorem

Theorem 4.1 For any formula A € L

PUF A iff A is valid under all interpretations
in reference structures with reading.

Proof. The correctness part of the theorem follows from Lemma 3.6. The completeness
proof is based on the Gentzen style formulation of PU and saturation procedure.

In the following a sequent is a formal expression of the form I' D A, where I' and A are
finite subsets of L.

Definition 4.2 Pl is the sequent calculus with axioms and rules of inference as follows:

Axioms:

e ' DA suchthat TNA#DorTeA.

e =D, where = = {0,A; | i =1,...,n} and a substitution o with the property (2) for
= does not exist.
Rules:

o Classical rules for N,— and structural rules together with the cut-rule.

e ATDA
O0,AT'DA

=, Bo,I'DA =1 D> Bo, A
=B, I'DA 7 =I'>B,A 7

most general unifier satisfying the condition (2) for = and obtained as a result of the

standard unification algorithm U. PUq s the system PUc without the cut rule.

where = ={0,A;|i=1,...,n} and o is the

Lemma 4.3 (Soundness of Pl w.r.t. PU) If Pl =T D A then I'F VAL 1L

Proof. Straightforward induction on the complexity of the proof of I' D A in Ple;. |

Definition 4.4 Saturation process is the nondeterministic procedure constructing a labeled
saturation tree as follows:

L\/ A denotes A; V...V A, for A=Ay, ..., A,

www.manaraa.com

Given the sequent 'y D Ag label the root with it and try repeatedly to apply
the saturation rules while they permit to add to the tree some node with the label
different from the label of its parent. The rules can be applied to an arbitrary
leaf of the current part of the tree if its label I' O A is not an axiom of Ply;.
In the formulations of the rules we suppose that such a leaf (a current node) is
already chosen.

Saturation rules:

Rule 1. If ANB €', then I'; :=T U{A, B} and A; := A. Add to the tree a
son of the current node labeled with the sequent I'; D Aj.

Rule 2. If AANB € A, then I'y :=T,A; := AU{A}and 'y := 1", Ay := AU{B}.
Add to the tree two sons of the current node labeled with the sequents
' DA;and I'y; D Ay .

Rule 3. If ~A €' (mA € A), then I'y :=T',A; := AU {A} (I'1 ;=T U{A}
and Ay := A). Add to the tree a son of the current node labeled with the
sequent I';y D Ajy.

Rule 4. If O0,A € T, then I'y ;=T U{A} and Ay := A. Add to the tree a son of
the current node labeled with the sequent I'; D Aj.

Rule 5. Call the unification algorithm U to get the most general solution o of
the system (2) where O,;A;,7 = 1,...,n is the list of all formulas of the form
O0,A from I'. Let I'y :=TU{Bo|B €I} and A; := AU{Bo|B € A}. Add
to the tree a son of the current node labeled with the sequent I'; D Aj.

Remark on termination. Rules 1-4 do not change the subformulas of the sequent so
they can not be applied infinitely many times. In rule 5 the algorithm U calls the standard
Unification Algorithm. The last one being applied to the ‘unconditional’ part of the system
(2) returns a substitution ¢ with the property o? = & that acts only on the variables from
I'o U Ag. Let V be the set of all such variables and V5 = {v € V|ve = v}. The set 1,
depends on the order in which the equations of the system (2) are given to the Unification
Algorithm. If we add to the end of the system (2) some new equations without violation
of the consistency of the system then the Unification Algorithm returns a substitution with
corresponding set V;, C V. So it is possible (and we suppose it is done) to implement the
calls to the unification algorithm U in such a way that along every path in the saturation tree
the sequence of corresponding sets Vy decreases monotonically. That provides a bound on
the set of subformulas. Thus a saturation tree for every sequent is finite (but not necessarily
unique). Therefore the saturation process always terminates and computes some saturation
tree of a given sequent. We say that the saturation process succeeds if it produces a saturation
tree with all leafs labeled with axioms; otherwise it fails.

Lemma 4.5 [f the saturation process on a given sequent succeeds, then the sequent is prov-

able in 77/7/7@_.

www.manaraa.com

Proof. The saturation tree with all leafs labeled by axioms is in fact the tree-like derivation
in Pl of the sequent labeling the root.]

Lemma 4.6 [f the saturation process fails on a sequent 'y D Ay, then the interpretation

REAT), R ENA) (8)

can be constructed from the saturation tree.

with the property

Proof. The saturation process provides the following saturation properties of the sequent
I' O A which is not an axiom and labels some leaf of the saturation tree:

e L CI,AGCA; TNA=0; TEA;

o if (ANB) el then A€l and B e T;

o if (ANB)€ A, then A€ Aor B€eA;

o if “A€T, then A€ A;if ~A€ A, then A€l
o if O,A €T, then A€l

o if 0,;A;, 1 =1,...,nis alist of all formulas of the form 0,4 from I', then there exist
a substitution o with the property (2);

e if o is the standard m.g.u. of (2) and A € I' (A € A), then Ao € I' (Ao € A).

Let Vi be the set of all variables from I'¢U A with the property vo = v. For each variable
v € Vp we choose a new constant of the corresponding type (cell or sentence) denoted by ,.

Let
M = {x, |v €V, vis a cell variable}

X ={z, | v € Vy, v is a sentence variable}
vy = Ty, (v E V),
R = {(xp, Acy)| p € Vo, (O,4) € To.}

We also assume that voy € X for v € V. The validity relation on X is defined as follows:
Ea, iff velo.
We claim that

Aell = RE A
Ace A = R A~

Indeed, note that I'c C I', Ao C A and it is sufficient to prove the claim for A € I'c U Ao
because Ao has the same interpretation as A. Induction on the complexity of A € 'c U Ao

e Case A =T follows from the saturation properties.

10

www.manaraa.com

e Case A = 9, follows from the definition of |=.

o Case A=p. Then p € Vj and

JE—

pr=0(p") = 0(zp1) = (p1)oos
where p; = po € V5. So po = pyo and po = pjo = p. We have
pT=poy = x
By definition of validity relation & | p* iff p € ['o.
e Case A = (BAC) follows from the saturation properties and the induction hypothesis.

o Case A =0,B follows from the definition of R.

We are now to prove that ® := (M, X, R,) is a r.s., 0(x,) = pooy, (v, € M) is a
reading procedure and the condition (8) holds for * = oo;.

R is a r.s.. The functionality of R follows from saturation properties.

(x,,Acy) € R = 0O,A€T0o
— A€loCI (saturation property)
— RE=A" (by Claim above)
— RE Aoy (Aoy = A%).

f is a reading procedure:

(zp,Aoy) e R = O0,AeloCT
— po=Ac=A (6 =)
= §(x,) = pooy = Aoy.

The conditions (8) follow from the claim and saturation property I'c C T', Ay C A. []
The completeness part of Theorem 4.1 follows now from Lemmas 4.3, 4.5, 4.6.]

Corollary 4.7 For finite sets I', A of z-formulas, and any z-formula A

T A — PUst+T DA,
PUsFT DA < Pls FI DA

Corollary 4.8 PU is decidable.

Proof. By Corollary 4.7 the decidability of PU follows from the decidability of Plg. The
decision algorithm for Pl is given by the saturation process. The sequent is provable in
PFeq i the Saturation succeeds. [

11

www.manaraa.com

5 Reference structures building and optimization.

The language L can now be considered as a programming language for designing reference
structures with reading procedures and their reductions. A program here is a formula ¢ € L
describing the properties of some (reduction of) r.s.r. (R,6). The satisfiability algorithm
extracted from the proof of the Completeness theorem checks whether ¢ is satisfiable and
constructs the finite model for ¢, which is the desired r.s.r. (R,).

The first stage is saturation. We reduce the problem of constructing a model for ¢ to
the problem of constructing a countermodel for the sequent ¢ D. The saturation algorithm
checks whether this sequent is provable and transforms it into the sequent I' O A with
saturation properties. If saturation succeeds, then PU + -, and thus there is no r.s.r.
satisfying the condition ¢. If saturation fails, we go to the second stage, which is the
construction of r.s.r. (R,6) and interpretation * satisfying conditions (8); it is described
in the proof of Lemma 4.6. The interpretation is a model of ¢ because ¢ € I'. Note that
according to Lemma 4.6 the resulting interpretation * maps sentence variables into atomic
sentences of r.s.r. (R,). It means, that in programming of reference structures by means of
L-formulas sentence variables stand for atomic sentences of reference structures. The default
third stage is a transition from the reference structure (R, 6) to a real memory organization;
in particular, we have to restore a proper data, hidden under uniform set of atomic sentences
of the reference structure. We may assume that if (p, A) € R (where p is a memory cell, A
is an L(M, X)-formula, R is the storage relation of (R,0)), and A is @ A A’, where v € X
is an atomic sentence of (R, #), then we restore in the cell p the proper data corresponding
to the atomic sentence x. The occurrences of atomic sentences from X inside the scope of
labeled modalities in A play the role of names of the relevant pieces of proper data, which
are much shorter, then the proper data itself; these names are not supposed to be replaced.
So, we finally get a memory organization with cells containing proper information together
with (much shorter) referential components, describing the structure of storage relation.

There are many natural ways to use the logic PU and the satisfiability algorithm to
construct the desired reductions of r.s.r.’s. For example, suppose the formula ¢ describing a
reference structure has the form

O, At ADO, A AL O, A A g

Then the interpretation * from Lemma 4.6 determines not only r.s.r (R, #), but also a reduc-
tion of (R, §) with the reduced storage relation Ry such that (pf, A7) € Ry foralli=1,...,n.

In order to construct reductions of r.s.r.’s which use only one cell instead of many con-
taining the same record, i.e. to construct r.s. with functional relation R™' or, moreover,
with invertible reading procedure #, we introduce the logics @1 and 75[\]1—1- The logic 75771
is PU + (A5) where (A5) is the following axiom scheme:

(A5) O,AND A = (B < Blp'/p]).

12

www.manaraa.com

@1_1 is the modification of PU where the “conditional” equality bjoc = bjo —= Bm = gja
is replaced by R R
b,oc = b]‘O' < b0 = b]‘O'.

Theorem 5.1 For any formula A € L
1. PU F A iff A* is valid for all interpretations * in r.s.r. with functional relation R™';

2. Py, F A iff A* is valid for all interpretations * in r.s.r. with invertible reading
procedure 6.

Proof. Similar to the proof of Theorem 4.1. []

The logics @1 and @1_1 are also decidable. The satisfiability algorithms from the
completeness proofs for these logics can be used in the same way as that for PU to construct
r.s.r. without double stored sentences.

References

[1] S. Artémov and T. Strassen. Functionality in the Basic Logic of Proofs. Technical report
TAM 93-004, Universitat Bern, January, 1993.

[2] J.-L.Lasser, M.J.Maher and K.Marriot. Unification revisited. In: “Foundations of Deduc-
tive Databases and Logic Programming” J.Minker (Ed.), Morgan Kauffman, pp.587-626,
1987.

[3] S. Artémov. Logic of proofs. Annals of Pure and Applied Logic, v.67, 1994 (to appear).

13

www.manaraa.com

